

FACTORS INFLUENCING WILLINGNESS TO CONSUME LOW GLYCEMIC INDEX FOODS AMONG FILIPINO MILLENNIAL AND GEN Z CONSUMERS

Riza Abilgos-Ramos¹, Rosaly V. Manaois¹ *Angelita P. Caña²

¹Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija

²State University of Northern Negros, Sagay City, Negros Occidental

Glycemic index (GI) is a measure of how quickly food increases blood sugar level. This study examined the factors influencing willingness to consume low-GI foods among Filipino Millennial and Gen Z consumers, who make up the majority of the country's population. A total of 316 Millennial and Gen Z individuals were surveyed online utilizing Google Forms. Results showed that the commonly consumed foods by the respondents are rice, bread, pasta/noodles, and root crops. The top 3 attributes they look for in buying food products are satiety, taste, and nutritional value. Filipino Millennial and Gen Z consumers are familiar with low glycemic index; however, they were unsure if their understanding about GI in foods is precise. Moreover, they demonstrate strong interest to consume food products with a low GI. Their willingness to consume low-GI foods is moderately associated with awareness of the glycemic index of foods. The findings further demonstrated strong associations between intention to consume and prediabetes diagnosis, taste, nutritional and health value, and satiety. It can be inferred that there is a large potential for Filipino millennial and Gen Z consumers to consume low-GI foods. However, continued efforts to educate them about the benefits of low-GI food consumption should be steered to attract them to utilize these healthier dietary choices. Product developers should prioritize taste, nutritional value and satiety-inducing foods by ensuring they are palatable, nutrient-dense, and formulated with ingredients that promote satiety. Furthermore, policy makers can target food and nutrition policies to improve production and consumption of low GI foods among the Filipino young generations.

* Corresponding author: Angelita P. Caña, State University of Northern Negros, Sagay City, Negros Occidental, Philippines. Email: angelita@sunn.edu.ph

Keywords: Filipinos, Gen Z, glycemic index, millennials, purchase intention

JEL Classification codes: D12, M31, I12

1. INTRODUCTION

Non-communicable diseases are now the top global public health concern as a result of unhealthy diet and lifestyle. The global diabetes population increased by 315% from 200 million in 1990 to 830 million in 2022, with prevalence growing more quickly in low- and middle-income countries than in high-income countries (World Health Organization, 2024). Consumption of foods with high glycemic index is one of the factors that contribute to the prevalence of diabetes (Sagili, *et al.*, 2022; Vlachos, *et al.*, 2020)

In the Philippines, consumption of high-glycemic rice in polished form remains high and diabetes prevalence is increasing (Department of Science and Technology [DOST], 2025). The glycemic index (GI) measures how quickly a food raises blood sugar. Glycemic index in foods is classified as high GI ($GI \geq 70$), intermediate GI ($55 < GI < 70$), and low GI ($GI \leq 55$) (Cabral *et al.*, 2022). Foods with a high GI produce glucose rapidly, which results in increased blood sugar levels (Tan *et al.*, 2022). On the other hand, foods with low GI are associated with a slower increase in blood sugar, indicating that these foods are healthier options particularly for persons that are suffering from diabetes (Kamchansuppasin, 2021). Consumption of low-GI foods results in weight loss (Gaesser *et al.*, 2021) and improves blood pressure, renal function and gut microbiota composition (Peres *et al.*, 2023). According to Kaur *et al.*, (2015), consuming low-GI breakfast and snacks can help minimize fluctuations in blood glucose level.

Most completed studies about Glycemic index are experimental in nature aimed at determining the effects of low-glycemic index (GI) foods on lowering blood sugar (Gerontiti *et al.*, 2024; Tan *et al.*, 2022; Chiavaroli, 2021; Zafar *et al.*, 2019). Some studies are market research aimed at understanding consumers' purchase and consumption behavior toward low GI foods. According to Ribeiro *et al.* (2019), understanding consumer acceptance on a particular product is essential for increased chance of market success. Additionally, it will help food manufacturers better predict consumer behavior, allowing them to develop products that meet market demands (Tan *et al.*, 2022). Moreover, Tan *et al.* (2022) found out that health concerns, environmental concerns and knowledge of glycemic food had a positive relationship to the purchasing behaviour of low glycaemic foods. While a sensory evaluation and consumer acceptance research conducted by Esposito *et al.* (2024) showed that knowledge and experience in consuming low GI foods significantly influence consumers' decision to buy these foods. Conversely, the findings

of Cabral *et al.* (2022) reported the level of rice consumption, sex, age, and education influenced consumers' perception towards rice with low GI.

When it comes to dietary choices, previous studies have shown evidence that the choice of foods is influenced by several factors. French *et al.* (2025) reported lower income households purchase fewer healthful foods than higher income households. Similarly, Pechy *et al.* (2016) found out a less-healthy food choices among lower socioeconomic groups. Moreover, Finaret and Masters (2019) ascertained that when incomes rise, households tend to enhance the quality of their food rather than increase their calorie consumption. In contrast, some studies revealed that rise in income increases calorie intake in developing countries due to increase purchasing power among consumers (Bhuyan *et al.*, 2020; Gao *et al.*, 2020; Shabnam *et al.*, 2021). Furthermore, several research pinpointed the role of education in dietary choices. Individuals who have attained high educational level are more likely to buy healthy food options due to increase knowledge on the benefits and impact of consuming such foods, resulting in a healthier diet (Azizi Fard, *et al.*, 2021; Ali and Ali, 2020; van Bussel *et al.*, 2020;). Nam and Suk (2024) also found a positive relationship between knowledge and health-conscious dietary choices, recommending efforts to address educational gaps to promote healthier food consumption. Public health systems also play a significant role in consumers dietary choices. According to Santos and Assuncao (2025), effective public policies and government measures are essential for shaping healthy food environments that support healthy diets and help reduce obesity and diet-related noncommunicable diseases (NCDs). Strong government policy is essential to create a food system that is healthy, profitable, fair, and sustainable for everyone (Mozaffarian *et al.*, 2018)

In the Philippines, Filipino consumers' acceptance of low GI foods remains unexplored. There are few market studies conducted to understand consumers behavior towards foods with low GI. According to the Consortium of International Agricultural Research Centers [CGIAR] (2024), more research is needed in the Philippines to understand how the low GI attribute affects the cooking quality, taste, and texture of rice, which are factors that heavily influence consumer preferences and purchasing decisions. Some studies about GI conducted in the Philippines focused on the identification and development of low-GI rice varieties (International Rice Research Institute, 2023; Fitzgerald *et al.*, 2011) and the determination of GI values for commonly consumed foods loaded with carbohydrates (Trinidad *et al.*, 2010).

Conversely, there have been limited studies aimed at understanding the behavior of Filipino consumers, particularly Millennials and Generation Z, towards low-GI food products. Promoting the consumption of low-glycemic index (GI) foods is vital, as cardiovascular disease and diabetes are respectively the 1st and 5th leading causes of

death among Filipinos (Philippine Statistics Authority, 2021). This study aimed to investigate the factors that influence willingness to consume low-GI food products among Millennials (Gen Y) and Gen Z consumers, who collectively make up the majority of the country's population. Understanding the food preferences and attitudes toward low GI foods can help food processors position their low GI-food offerings to attract these young adult consumers. Moreover, results of this study can guide policy makers to target food and nutrition policies for the development and increased consumption of foods with low glycemic index.

2. METHODOLOGY

Study Area

The study was carried out on Filipino individuals belonging to the Millennials (Gen Y) and Gen Z generations. Millennials were defined as those born between 1980 and 1995, while Gen Z individuals were born from 1996 to 2010 (Andrea et al., 2016). These two generations make up the majority of the population in the Philippines (United Nations Population Fund [UNPFA], 2025; United Nations Development Programme [UNDP, 2024]. The respondents who participated in the online surveys were distributed across the various regions in the Philippines, as shown in Table 1.

Table 1. Distribution of respondents across the regions in the Philippines

Region	Frequency	Percentage
Region 1 (Ilocos Region)	33	10.4
Region 2 (Cagayan Valley)	23	7.3
Region 3 (Central Luzon)	28	8.9
Region 4A (CALABARZON)	15	4.7
Region 4B (MIMAROPA)	14	4.4
Region 5 (Bicol Region)	19	6.0
Region 6 (Western Visayas)	48	15.2
Region 7 (Central Visayas)	26	8.2
Region 8 (Eastern Visayas)	21	6.6
Region 9 (Zamboanga Peninsula)	7	2.2
Region 10 (Northern Mindanao)	13	4.1
Region 11 (Davao Region)	14	4.4
Region 12 (SOCCSKSARGEN)	11	3.5
Region 13 (Caraga Region)	8	2.5

National Capital Region (NCR)	18	5.7
Bangsamoro Autonomous Region in Muslim Mindanao (BARMM)	6	1.9
CAR (Cordillera Administrative Region)	12	3.8
Total	316	100

Sampling and Data Collection Procedure

Primary data were collected through an online survey utilizing Google Forms. Using convenience sampling, the questionnaire was sent through emails and social media contacts of the Philippine Rice Research Institute (PhilRice) researchers and partners with Millennials and Gen Z individuals who were readily accessible and available completed the online survey questionnaire.

A minimum of 300 adult respondents (aged ≥ 18 years old) based on Cochran sampling technique was determined. The actual number of respondents obtained was 316. The study did not impose quota per region, instead the distribution of respondents across regions reflected the number of Millennials and Gen Z individuals who completed the questionnaire.

The participation was voluntary and informed consent from all participants was obtained. A combination of structured (multiple choice, checkbox, etc.) and semi-structured (short-text description) questionnaires was used to collect the following data: (1) socio-demographic characteristics of the respondents, (2) food consumption habits (3) consumer awareness and knowledge on GI (4) preference for low-GI rice and rice-based products, (5) health status and health management, and (6) interest and willingness to purchase low-GI rice and rice-based products.

Data Analysis

Descriptive statistics particularly averages or means, frequencies and percentages were employed to analyze the demographic characteristics of the respondents, their commonly consumed rice-based meals, preference for low-GI rice and rice-based products, health conditions, health management methods, and their awareness and willingness to consume low GI foods.

Conversely, to determine the factors that influence Millennials and Gen Zs to consume low-GI foods, correlation analysis was used. By using correlation, the study purposes to determine the relationship or association between the identified factors and the willingness of Millennials and Gen Z consumers to consume low glycemic index food

without imposing causation. Understanding which variables are associated with intention to consume low GI is important for guiding product developers and policymakers.

Past studies have shown that consumers' consumption of functional foods including low glycemic index foods are linked to several motivations including health concerns, environmental concerns and knowledge of glycemic food (Tan *et al.*, 2022), knowledge and experience in consuming low GI foods (Esposito *et al.*, 2024) and individuals' personal characteristics (Cabral *et al.*, 2022). Furthermore, consumers' decision to purchase and consume foods are affected by nutritional value especially among health-conscious individuals (Wang, 2024; Shammakh *et al.*, 2020), and taste, preferring delicious foods (Mustapa *et al.*, 2024; Andrianto, 2019).

The study variables correlated with willingness to consume low GI foods include socio-demographic characteristics, particularly age, sex, marital status, education and income. Other variables include awareness on GI of foods, prediabetes diagnosis, taste, nutritional and health value, affordability, food safety, product brand, recommendations by family and friends, satiety. Below are the descriptions/measurements of the variables:

Variable	Description/Measurement
Age	Refers to the age of the respondents in number of years (age range)
Sex	Is a nominal variable referring to the sex of the respondents (coded as male- 1; female-2)
Marital status	Is a nominal variable referring to the marital status of the respondents (coded as single-1, married 2, widow(er or separated)-3).
Education	Is an ordinal variable indicating the education level of the respondents (coded as primary-1, secondary-2, tertiary-3 vocational-4)
Income	Refers to the income of the respondents (income range)
Awareness on GI of foods	Refers to respondents' awareness to glycemic index of foods (coded as aware-1, aware but not certain-2, and not aware-3)
Prediabetes diagnosis	Is a nominal variable referring to the prediabetes diagnosis of the respondents (coded as 1-with prediabetes diagnosis 2-no prediabetes diagnosis)

Taste	Refers to the taste attribute of the low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)
Nutritional and health value	Refers to the nutritional and health value attribute of the low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)
Affordability	Refers to the affordability attribute of the low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)
Food safety	Refers to the food safety attribute of the low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)
Product brand	Refers to the product brand consideration for buying low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)
Recommendations by family and friends	Refers to the family and friends' recommendations consideration for buying low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)
Satiety	Refers to the satiety attribute of the low GI foods. This is measured using a 5-point Likert scale specifically agreement scale coded as Strongly Disagree-1 Disagree-2 Neutral -3 Agree-4 Strongly Agree-5)

3. RESULTS AND DISCUSSION

Socio-demographic Profile of the Respondents

Table 2 shows the socio-demographic characteristics of the respondents. Results showed that more than half (59%) of the respondents are Generation Z while 41% are Millennials. The respondents have an average age of 26 years old in which according to the Department of Science and Technology - Philippine Council for Health Research and Development (DOST-PCHRD) age classification, this age belongs to the young adult category. Young adults are individuals who are living independently, have high educational attainment, and are employed. Additionally, in terms of health condition, this age group is vulnerable to weight gain (Poobalan, 2014).

Regarding sex, the majority of them are female (60.1%) while 39.9 are male. Previous studies (Bärebring et al., 2020; Glorioso et al., 2018) reported that women are more health conscious than men, and that women are often the primary decision-makers for household purchases (Tariga et al., 2021). Most (79.9%) of the respondents are single, while the remaining 18.3% are married. This predominance of single individuals is possibly because this study was conducted online through Google Forms. Single or unmarried individuals tend to spend more time using the internet than married couples (Labucay, 2014). This finding could also suggest an increasing interest of unmarried people for health-beneficial foods including foods with low GI. According to Dalin-as et al. (2023) unmarried Filipino consumers are more likely to buy functional foods.

Further descriptive statistics revealed that most of the respondents have attained college educational level (75.9%). This aligns with the study of Poobalan (2014) and Azizi Fard et al. (2021) which reported that there is a strong positive correlation between an individual's educational attainment and his/her choice for healthier food options indicating that those with higher educational level are more likely to buy foods with health benefits.

Majority of the study participants (67%) earned a monthly income between PhP10,000 to PhP40,000. According to the Philippines' income classification, these individuals belong to the low income but not poor category (Ta-asan, 2022) indicating that they have financial capability to buy health-beneficial foods which are often perceived as more expensive (Grant et al., 2020). Additionally, 13% of the respondents have a monthly income above PhP40,000, suggesting a high purchasing power of the millennials and Gen Z consumers. Therefore, they can afford to buy healthy food choices and have the capacity to engage in health-conscious consumption behavior, including the potential to purchase and consume foods with low-GI.

Table 2. Socio-demographic profile of respondents

Variable	Frequency	Percentage (%)
Gen Z or Centennials	186	59
Gen Y or Millennials	130	41
Total	316	100
Age (average in years)	26	
Sex		
Male	126	39.9
Female	190	60.1
Total	316	100
Civil Status		
Single	252	79.9
Married	58	18.3
Widow/er or separated	6	1.8
Total	316	100
Education		
Primary	6	1.8
Secondary	11	3.6
College	240	75.9
Vocational	59	18.7
Total	316	100
Income		
PhP10,0000 and below	63	20
PhP10,000-40,000	209	66
PhP4,0000-70,000	35	11
PhP70,000-100,000	6	2
Above PhP100,0000	3	1
Total	316	100

Food Consumption Habits Among Millennials and Gen Z

Descriptive analysis revealed that rice (42.5%) is the top consumed food by Filipino millennials and Gen Z consumers (Table 3). This is because rice is the staple food in the Philippines (Dasmarinas, 2020). In general, Filipinos consume polished white rice which is eaten together with viands like meat, fish, and vegetables. Filipinos consume meals three times a day during breakfast, lunch, and dinner with rice constituting the big portion of each meal. However, Fuller-Thomson *et al.*, (2017) emphasized that a meal

should consist of 50% veggies, 25% rice, and 25% protein. The result is consistent with the national data that rice and rice products as the staple food in the country contribute over one-third (35.2% or 1,064g) of the total daily food consumption per Filipino household (DOST, 2025). In terms of glycemic index, the polished white rice has a GI score of 70 and above which can increase the risk of diabetes (Arasa, 2025). Daily consumption could be one reason for a high incidence of diabetes in the Philippines. According to Fuller-Thomson *et al.* (2017), overconsumption of refined carbohydrates like white rice can spike blood sugar resulting in increased risk of type 2 diabetes.

The next most consumed food product by the respondents is bread (31.3%). Filipinos widely consumed bakery products. Breads are eaten as snacks or meals (Bocog *et al.*, 2023). Breads have become a staple food in Filipino households offering affordable meals (6Wresearch, 2025). Similar with white rice, bakery products particularly white breads are characterized by high glycemic index values (Skřivan, 2024) ranging from 87 to 69 (Marangoni and Poli, 2008), thus regular consumption can lead to rapid increases in blood glucose levels, thereby causing metabolic stress and leading to insulin resistance and type 2 diabetes (Pasqualoni *et al.*, 2024; Schadow *et al.*, 2022).

Following breads, Filipino Millennials and Gen Z Filipinos consumed noodles or pasta (10.2%). The Philippines has a high consumption of pasta which is expected to reach 5.5kg per person in 2025 (Statista, 2025). A study on the demand for instant noodles among college students (Generation Z) revealed large consumption of instant noodles especially among students who faced financial constraints (Galarpe and Digal, 2023). Usually, pasta has low to medium glycemic index values (Di Pede *et al.*, 2021). Other mostly consumed foods by Filipino Millennials and Gen Z consumers are root crops such as sweet potato and cassava (6.6%), dairy products (4.7%), fruits (3.6%), and biscuits (1.1%).

These findings suggest that the diets of Filipino millennials and Gen Z individuals heavily involved cereal-based foods. These align with the study of the Department of Science and Technology - Philippine Council for Health Research and Development (DOST, 2025) which found that young adult individuals largely consume cereals. The results implied the importance of a balanced diet among these consumer groups to avoid the risk of diabetes and other diseases associated with frequent consumption of carbohydrate rich foods. Furthermore, the findings suggest the importance of low GI foods consumption as these foods help prevent increase in blood sugar levels (Pasqualoni *et al.*, 2024; Skřivan *et al.*, 2024; Schadow *et al.*, 2022); Di Pede *et al.*, 2021)

Table 3. Commonly consumed foods of the respondents (*multiple responses*)

Food	Frequency	Percentage (%)
Rice	225	42.5
Bread	166	31.3
Noodles/pasta	54	10.2
Root crops	35	6.6
Dairy products	25	4.7
Fruits	19	3.6
Biscuits	6	1.1
Total	530	100.0

Health status and health management of Millennials and Gen Z

Diabetes is a prevalent public health concern in the Philippines. It is closely linked to dietary factors, including consumption of high glycemic index (GI) foods (Angeles-Agdeppa & Custodio, 2020). Individuals who are not committed to making necessary lifestyle and dietary changes are more at risk of developing diabetes (Angeles-Agdeppa & Custodio, 2020). This study examined the respondents' self-rated health status in relation to diabetes. As shown in Table 4, most (84.2%) of the participants claimed they are not diabetic which could be because diabetes mellitus more commonly affects older Filipino individuals (Giron and De Vega, 2022). However, a significant portion of the participants (14.4%) stated that they have no prediabetes diagnosis but have a family history of the disease. Individuals with a family history of the condition are at an increased risk of developing diabetes themselves (United States Centers for Disease Control and Prevention, 2024; Ndetei *et al.*, 2024; Alrashed *et al.*, 2023).

Furthermore, a small percentage (1.4%) of the respondents divulged that they have a diabetes diagnosis. The results suggest that younger individuals, especially those who have a family history of diabetes are also at risk of developing this illness. This implies the need for dietary changes such as consumption of low GI foods to reduce the risk of diabetes. Low-GI diets have shown to be effective in managing diabetes (Zafar *et al.*, 2019; Gerontini *et al.*, 2024).

The respondents are employing various measures to maintain their well-being. About 30% of them claim to manage their health by eating healthy foods. This agrees with the World Health Organization's (2019b) recommendations for individuals to consume nutritious food such as fruits, vegetables, legumes, nuts and whole grains to keep being healthy. Additionally, 27% of the respondents reported avoiding sweets to help regulate their sugar intake while 22% of the participants stated that they manage their health by

taking dietary supplements to boost their immune system. Furthermore, 21% of the respondents indicated that they exercise regularly. Interestingly, a small portion (0.5%) of the respondents reported managing their health by taking insulin shots. These individuals were those who claimed that they have diabetes and were taking insulin shots as a medical treatment to manage their condition.

Table 4. Health status and health management of respondents in terms of having diabetes

Health status	Frequency	Percentage (%)
No diabetes diagnosis	266	84.2
No diabetes diagnosis, but family history of diabetes	46	14.4
With pre-diabetes diagnosis	4	1.4
Total	316	100
Health Management (multiple response)		
Eating healthy foods	83	30
Taking insulin shots	2	0.5
Exercising	47	21
Avoid eating sweets	72	27
Taking dietary/health supplements	51	22
Total	255	100

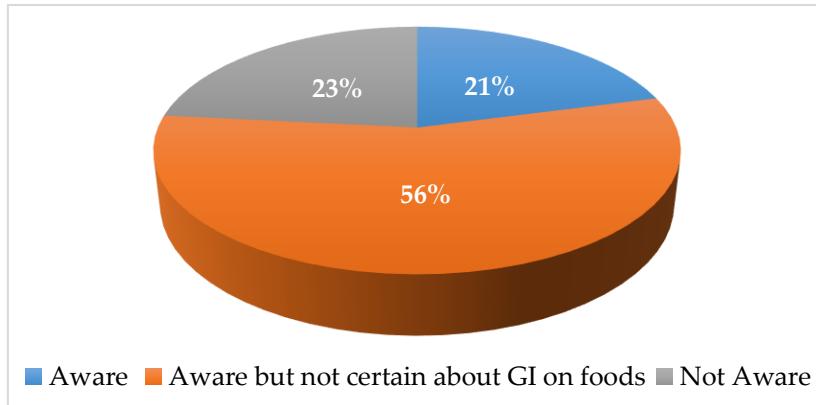
Considerations of millennials and Gen Z Filipino consumers in buying and consuming food products

Table 5 presents the attributes or factors considered by respondents when purchasing and consuming food products. The findings reveal that Filipino millennials and Gen Z consumers primarily consider satiety (21.3%), suggesting that they favor foods that provide a longer sense of satisfaction. Interestingly, when it comes to foods with low GI, these are broken down slowly thus providing long lasting energy and feeling of satiety (Kaur *et al.*, 2015; Harvard Health Publishing, 2023). Furthermore, research by De-Magistris and Gracia (2017) indicates that consumers are willing to pay a higher price for foods that provide greater satiety.

Taste is the secondary consideration of the respondents when purchasing food products implying the need for food manufacturers or processors to develop low-GI products with good taste or flavor that satisfies Millennials and Gen Z consumers. Individuals highly value the taste of foods, preferring products that are delicious (Mustapa *et al.*, 2024; Andrianto, 2019). The respondents also look for the nutritional value

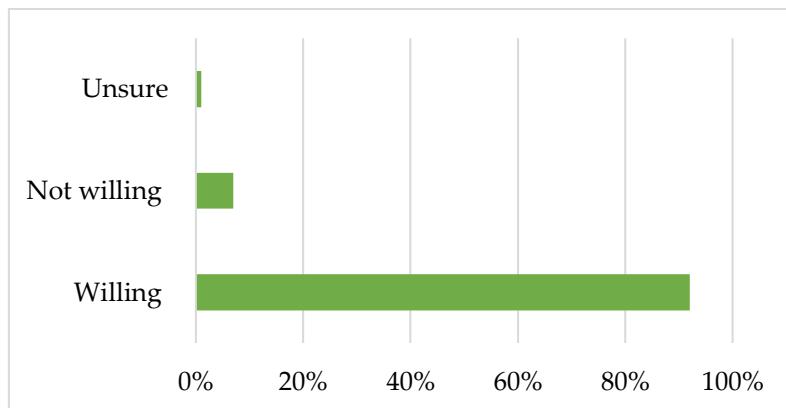
of foods (11.8%) indicating a growing interest of Filipino millennials and Gen Z on consuming healthy foods. Health and nutritional benefits largely influence consumer perceptions and purchase intentions, especially among health-conscious individuals (Wang, 2024; Shammakh *et al.*, 2020). Filipino consumers have become more aware of food safety, health and quality due the Covid-19 pandemic. The findings suggest an opportunity for food manufacturers to produce low GI foods highlighting their nutritional benefits (Tariga *et al.*, 2021).

Other key aspects that Filipino millennials and Gen Z consumers look for in food products are product safety (86%), convenience and availability (9.5%), affordability (9.1%), recommendations from family members (6.2%), packaging (5.7%), and brand name (5.5%).


Table 5. Attributes/Considerations of the respondents look for in buying and consuming food products (*multiple response*)

Attributes/Considerations	Frequency	Percentage (%)
Nutritional and health value	97	11.8
Taste	169	20.5
Product safety	86	10.4
Affordability	75	9.1
Convenience and availability	78	9.5
Satiety	175	21.3
Packaging	47	5.7
Recommended by family	51	6.2
Brand name	45	5.5
Total	823	100

Awareness and Willingness to Consume low GI Foods


Figure 1 illustrates that more than half (56%) of the study participants were aware of glycemic index, but they are not entirely certain about their understanding of the concept. Specifically, they knew that low-GI foods are typically recommended for individuals with diabetes, but they were unsure if their knowledge about GI was correct. According to Esposito *et al.* (2024), consumer understanding of the effects and risks associated with high-GI products is unclear, making them not supported in their dietary choices, even if they are the most vulnerable to diabetes, obesity, cardiovascular disease, and other illnesses. Thus, consumption of foods rich in carbohydrates (Kyrou, *et al.*, 2020) remains high. In the Philippines, a study conducted by the Philippine Rice Research

Institute reported that more Filipinos are becoming more aware about the health benefits of low-glycemic index (GI) rice (Tomas, 2021). Results further showed that 21% of the respondents said that they are aware and knowledgeable about GI and the types of low-GI foods. Conversely, around 23% of the participants were not entirely familiar or aware of GI in foods.

Figure 1. Awareness on glycemic index of foods

In terms of willingness to consume low GI foods, results showed that the majority (92%) of the participants expressed willingness suggesting that they recognize the benefits of these food products (Figure 2). Recent studies showed that Filipino consumers' have strong willingness to pay for functional food products (Bocog et al., 2023; Dalin-as et al., 2023; Lao et al., 2022).

Figure 2. Willingness to consume low glycemic index foods

Factors Influencing Willingness to Consume Low Glycemic Index Foods

Results of the correlation analysis showed positive associations between willingness to consume and awareness on GI of foods ($\chi^2 = 7.241$, $p\text{-value} = .027$), diabetes diagnosis ($\chi^2 = 87.192$, $p\text{-value} = .000$), perceived importance ($\chi^2 = 16.001$, $p\text{-value} = .003$), taste ($\chi^2 = 229.796$, $p\text{-value} = .000$), nutritional and health value ($\chi^2 = 212.334$, $p\text{-value} = .000$), and satiety ($\chi^2 = 174.427$, $p\text{-value} = .000$). Awareness on GI foods (Phi and Cramer's V = 0.161) indicated a moderate association with intention to consume. This means that the millennials and Gen Z's willingness to consume foods with low-GI increases with their awareness about the glycemic index of foods. Awareness plays a significant role in increasing the purchase intentions of individuals for functional products (Esposito *et al.*, 2024; Dalin-as *et al.*, 2023; Tan *et al.*, 2022; Hameed *et al.*, 2023). The results imply the need for educational campaigns to raise awareness on glycemic index of foods among Millennials and Gen Z consumers, aimed at increasing their consumption for low GI goods.

Individuals diagnosed with prediabetes showed a strong correlation (Phi and Cramer's V = .560) with a higher willingness to consume low-glycemic index (GI) foods. This suggests that those with pre-diabetes are more likely to consume low-GI food options, as these are commonly recommended for reducing glucose in blood. Health is an important determining factor of consumers choosing food products (Tan *et al.*, 2022; Ribeiro *et al.*, 2019) and it remains a primary motivation for consuming food products (Topolska *et al.*, 2021). This implies that product developers could target individuals diagnosed with prediabetes for the development or production of low GI food products. The study found a strong association (Phi and Cramer's V = .909) between the taste of low-glycemic index (GI) foods and willingness to consume among Millennial and Gen Z consumers indicating that palatability of low-GI products should be primarily considered when developing and producing these types of foods. Previous studies revealed that taste is a major factor influencing consumers' decision to buy food products (Dalin-as *et al.*, 2023; Lao *et al.*, 2022; Ballesteros *et al.*, 2019). Poor taste negatively affects consumption of healthy food products (Angeles-Agdeppa *et al.*, 2022). In addition, the study of Caña *et al.* (2025) showed that taste is positively and significantly affect consumers' purchase intention toward a buffalo milk-based yogurt enriched with stabilized rice bran, a functional product. Food manufacturers must therefore develop low GI food products that are palatable and flavorful to make them appealing to millennial and Gen Z consumers. According to USDA (2024), Filipinos, particularly younger generations, look for diverse and flavorful food products.

The study also found a strong association (Phi and Cramer's V = .874) between the nutritional and health value of low-glycemic index (GI) foods and willingness to consume. This means that Millennial and Gen Z consumer groups' intention to consume low GI foods increases with nutritional content and health benefits of these products. Chilón-Troncos (2024) highlighted that awareness on the nutritional benefits of foods influence consumers' willingness to eat healthy foods. Perceived value is positively associated with intention to purchase (Duffett and Charles, 2023). Food developers should include in the product labels the GI value of the product and its nutritional or health benefits to encourage Millennial and Gen Z consumers to consume these foods.

In addition, the feeling of satiety (Phi and Cramer's V = .792) is strongly correlated with purchase intent. This means that millennial and Gen Z consumers' willingness to buy low GI foods increases when they experience a feeling of satiety or fullness from consuming these foods. This aligns with the findings of Molnar *et al.* (2023), which indicate that individuals are more likely to buy whole-grain products, such as cookies, because of their ability to provide a longer-lasting sense of satiety (Table 6). This finding implies for product developers to formulate ingredients that promote satiety.

Table 6. Correlation analysis on the factors influencing willingness to consume low GI foods

Variable	Pearson Chi-Square	P-value	Phi and Cramer's V
Age	25.763 ^a	.476	.305
Sex	1.461 ^a	.227	.073
Marital status	3.589 ^a	.166	.114
Education	5.596 ^a	.231	.142
Income	3.589 ^a	.166	.114
Awareness on GI of foods	7.241 ^a	.027**	.161
Prediabetes diagnosis	87.192 ^a	.000***	.560
Taste	229.796 ^a	.000***	.909
Nutritional and health value	212.334 ^a	.000***	.874
Affordability	13.136 ^a	.069	.217
Food safety	3.855 ^a	.796	.118
Product brand	7.600 ^a	.369	.165
Recommendations by family and friends	8.344 ^a	.303	.173
Satiety	174.427 ^a	.000***	.792

*significant

**highly significant

***very highly significant

4. CONCLUSION & RECOMMENDATION

The study allows for understanding into the willingness to consume and preferences of Filipino millennials and Gen Z consumers regarding low-GI (glycemic index) foods. Despite lacking full understanding about which foods have low-GI, millennials and Gen Z consumers indicated high willingness to consume these foods. However, it is imperative to address the knowledge gap by educating the young adult consumers about low-GI foods and their health benefits. This study has theoretical and practical implications such that it contributes to a deeper understanding of the factors that influence the food consumption decisions of Filipino millennials and Gen Z toward low GI foods. By understanding these factors, food manufacturers can better position their low-GI food products to meet the preferences of Filipino millennials and Gen Z consumer segments.

To increase the utilization of low glycemic index foods, continued efforts in educating the Filipino millennial and Gen Z consumer groups about low-GI foods and their health benefits be made. Moreover, food product developers should put into considerations taste, nutritional value, and satiety when developing foods with low GI. They should ensure that low GI food products are enjoyable to eat or palatable, nutritious, and promote satiety. In addition, food product developers should include in the product labels the glycemic index value of foods to help consumers make informed consumption choices. At the national level, nutrition interventions such as school-based feeding programs and product labelling requirements must push for low-GI foods. The government could implement subsidized program for consumers with limited access to low GI foods such as those living in rural areas and low-income households. On the other hand, product developers could partner with local retailers to ensure low GI food products are distributed to these consumer segments. With an increased consumption of low-GI foods, prevalence of diabetes and other non-communicable diseases (NCDs) can be reduced resulting in lower health expenditures.

5. ACKNOWLEDGMENT

We are grateful to Alcel Atanacio for her assistance in the data collection and processing and to Maecy Baptista for re-processing the data. We are also indebted to all our online survey respondents.

6. REFERENCES

6Wresearch. (2025, February). Philippines Bread and Bakery Products Market | Size 2031. 6Wresearch. Retrieved April 22, 2025, from <https://www.6wresearch.com/industry-report/philippines-bread-and-bakery-products-market-2020-2026>

Alrashed, F. A., Ahmad, T., Almurdi, M. M., Alqahtani, A. S., Alamam, D. M., & Alsubiheen, A. M. (2023). Investigating the relationship between lifestyle factors, family history, and diabetes mellitus in non-diabetic visitors to primary care centers. *Saudi Journal of Biological Sciences*, 30(9), 103777. <https://doi.org/10.1016/j.sjbs.2023.103777>

Ali, T. and Ali, J. (2020). Factors affecting the consumers' willingness to pay for health and wellness food products. *Journal of Agriculture and Food Research* Volume 2 <https://doi.org/10.1016/j.jafr.2020.100076>

Andrea, B., Gabriella, H., & Tímea, J. (2016). Y and Z generations at workplaces. *Journal of Competitiveness*, 6(3), 90–106. <https://doi.org/10.7441/joc.2016.03.06>

Andrianto, F. (2019). The influence of taste and product quality to purchasing decisions and customer satisfaction. *Journal of World Conference (JWC)*, 1(1), 106–110. <https://doi.org/10.29138/prd.v1i1.31>

Angeles-Agdeppa, I., & Custodio, M. R. S. (2020). Food sources and nutrient intakes of Filipino working adults. *Nutrients*, 12(4), 1009. <https://doi.org/10.3390/nu12041009>

Angeles-Agdeppa, I., Platon-Desnacido, J., Ducay, A. J., Duante, C., & Phanvijhitsiri, K. (2022). Drivers and Barriers of whole grain consumption in the Philippines: 2019 Expanded National Nutrition Survey. *The Philippine Journal of Science*, 151(5). <https://doi.org/10.56899/151.05.25>

Arasa, D. (2025, January 6). PhilRice announces new rice varieties that can lower blood sugar. Inquirer. Retrieved April 2, 2025, from <https://technology.inquirer.net/139690/philrice-announces-new-rice-varieties-that-can-lower-blood-sugar>

Azizi Fard, N., De Francisci Morales, G., Mejova, Y. et al. On the interplay between educational attainment and nutrition: a spatially-aware perspective. *EPJ Data Science* 10, 18 (2021). <https://doi.org/10.1140/epjds/s13688-021-00273-y>

Ballesteros, J., Abilgos-Ramos, R., & Amestoso, N. (2019). Experts' perspective, consumer perception on rice-based products and market trend on consumer goods for rice-based product idea generation. *Rice-Based Biosystem Journal*, 5, 27–39.

Bärebring, L., Palmqvist, M., Winkvist, A., & Augustin, H. (2020). Gender differences in perceived food healthiness and food avoidance in a Swedish population-based survey: a cross sectional study. *Nutrition Journal*, 19(1).
<https://doi.org/10.1186/s12937-020-00659-0>

Bhuyan B., Sahoo B., & Suar D. (2020). Quantile regression analysis of predictors of calorie demand in India: An implication for sustainable development Goals. *Journal of Quantitative Economics* Volume 18, pp. 825–859. doi: 10.1007/s40953-020-00200-4

Bocog, R., Paradero, A., & Abilgos-Ramos, R. (2023). Perceptions and Factors Affecting Consumers' Purchase Intentions of Fermented Rice Bran (FRB)- Enriched Bakery Products in Leyte, Philippines. *Science and Humanities Journal*, 18, 58–76. <https://doi.org/10.47773/shj.1998.181.5>

Cabral, D., Fonseca, S. C., Moura, A. P., Oliveira, J. C., & Cunha, L. M. (2022). Conceptualization of Rice with Low Glycaemic Index: Perspectives from the Major European Consumers. *Foods*, 11(14), 2172. <https://doi.org/10.3390/foods11142172>

Cando, L. F. T., Quebral, E. P. B., Ong, E. P., Catral, C. D. M., Relador, R. J. L., Velasco, A. J. D., Alcazar, R. M. U., Reyes, N. a. L., Pilotin, E. J. B., Ornos, E. D. B., Paz-Pacheco, E., & Tantengco, O. a. G. (2024). Current status of diabetes mellitus care and management in the Philippines. *Diabetes & Metabolic Syndrome Clinical Research & Reviews*, 18(2), 102951. <https://doi.org/10.1016/j.dsx.2024.102951>

Caña, A. Abilgos-Ramos, R. Corpuz, H. Morales, A. Mancio, R. Lagrimas, P. Catague, M. Montibon, J. (2025). Volume 9 No.1 pp. 21-43 <https://doi.org/10.5281/zenodo.17196789>

Castillo, F. G., Jr. (2023). Consumer Buying Behavior: the multicultural influence in the Philippines. Zenodo (CERN European Organization for Nuclear Research). <https://doi.org/10.5281/zenodo.7648082>

Consortium of International Agricultural Research Centers [CGIAR]. (2024, October 22). *IRRI researchers capture consumer insights on low glycemic index rice in ongoing market study*, <https://www.cgiar.org/news-events/news/irri-researchers-capture-consumer-insights-on-low-glycemic-index-rice-in-ongoing-market-study/> (accessed 12 April 2025).

Chiavaroli, L., Lee, D., Ahmed, A., Cheung, A., Khan, T. A., Blanco, S., Mejia, N., Mirrahimi, A., Jenkins, D. J. A., Livesey, G., Wolever, T. M. S., Rahelić, D., Kahleová, H., Salas-Salvadó, J., Kendall, C. W. C., & Sievenpiper, J. L. (2021). Effect of low glycaemic index or load dietary patterns on glycaemic control

and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. *BMJ*, n1651.

<https://doi.org/10.1136/bmj.n1651>

Chilón-Troncos, R. F., García-Salirrosas, E. E., Escobar-Farfán, M., Millones-Liza, D. Y., & Villar-Guevara, M. (2024). Predicting willingness to consume healthy brand foods using the theory of planned behavior: the role of nutritional literacy. *Frontiers in Nutrition*, 11. <https://doi.org/10.3389/fnut.2024.1353569>

Dalin-As, D., Abilgos-Ramos, R., & Paradero, A. (2023). Perceptions and Determinants of Consumers' Willingness to buy (WTB) fermented rice bran-enriched beverages in eastern Visayas, Philippines. *The Philippine Journal of Science*, 152(5). <https://doi.org/10.56899/152.05.21>

Dasmarinas, D. M., Palisoc, A. R., Reyes, V. A., Roman, P. C., & Abelgas, F. J. (2020). The food consumption of Generation Z in Colegio de De Letran: A basis for marketing programs. *Linang*, 2(1), 52–62.

De-Magistris, T., & Gracia, A. (2016). Does hunger matter in consumer purchase decisions? An empirical investigation of processed food products. *Food Quality and Preference*, 55, 1–5. <https://doi.org/10.1016/j.foodqual.2016.08.002>

Di Pede, G., Dodi, R., Scarpa, C., Brightenti, F., Dall'Asta, M., & Scazzina, F. (2021). Glycemic Index Values of Pasta Products: An Overview. *Foods*, 10(11), 2541. <https://doi.org/10.3390/foods10112541>

Department of Science and Technology [DOST] (2025, July 10). *Survey says: Rice, not meat, is Filipinos' top protein source*. <https://www.dost.gov.ph/knowledge-resources/news/86-2025-news/4074-survey-says-rice-not-meat-is-filipinos-top-protein-source.html#maincontents>

Department of Science and Technology [DOST] (2025, July 3). *DOST-FNRI unveils 2023 Filipinos state of health and nutrition*. <https://www.dost.gov.ph/knowledge-resources/news/86-2025-news/4067-dost-fnri-unveils-2023-filipinos-state-of-health-and-nutrition.html>

Department of Science and Technology - Philippine Council for Health Research and Development (DOST-PCHRD). (2025). *Cardiometabolic risk profile of young adults with diabetes in the Philippines: A cross-sectional analytic study using data from the 8th Philippine National Nutrition Survey*. <https://registry.healthresearch.ph/index.php/component/healthregistry/?view=research&layout=details&cid=2684>

Duffett, R. G., & Charles, J. R. (2024). Assessing antecedents of Google shopping ads intention to purchase: a multigroup analysis of generation Y and Z 26(7), 1–21. <https://doi.org/10.1108/yc-12-2023-1923>

Esposito, L., Casolani, N., Ruggeri, M., Spizzirri, U. G., Aiello, F., Chiodo, E., Martuscelli, M., Restuccia, D., & Mastrocola, D. (2024). Sensory evaluation and consumers' acceptance of a low glycemic and Gluten-Free Carob-Based bakery product. *Foods*, 13(17), 2815. <https://doi.org/10.3390/foods13172815>

Finaret A.B., Masters W.A. (2019). Beyond calories: The new economics of nutrition. *Annual Review of Resource Economics*. 11:237–259. doi: 10.1146/annurev-resource-100518-094053

Fitzgerald, M. A., Rahman, S., Resurreccion, A. P., Concepcion, J., Daygon, V. D., Dipti, S. S., Kabir, K. A., Klingner, B., Morell, M. K., & Bird, A. R. (2011). Identification of a major genetic determinant of glycaemic index in rice. *Rice*, 4(2), 66–74. <https://doi.org/10.1007/s12284-011-9073-z>

French, S. Tangney, C. Crane, M., Wang, Y. & Appelhans, B. (2019). Nutrition quality of food purchases varies by household income: the SHoPPER study. *BMC Public Health* 19, 231 <https://doi.org/10.1186/s12889-019-6546-2>

Fuller-Thomson, E., Roy, A., Chan, K. T., & Kobayashi, K. M. (2017). Diabetes among non-obese Filipino Americans: Findings from a large population-based study. *Canadian Journal of Public Health*, 108(1), e36–e42. <https://doi.org/10.17269/cjph.108.5761>

Gaesser, G. A., Jones, J. M., & Angadi, S. S. (2021). Perspective: Does Glycemic Index Matter for Weight Loss and Obesity Prevention? Examination of the Evidence on “Fast” Compared with “Slow” Carbs. *Advances in Nutrition*, 12(6), 2076–2084. <https://doi.org/10.1093/advances/nmab093>

Galarpe, K. and Digal, L. (2023). Factors driving consumer demand for instant noodles among college students in Davao City. UP Mindandao University Library Open Public Access Catalog, available at: <https://koha.upmin.edu.ph/cgi-bin/koha/opac-detail.pl?biblionumber=20437> (accessed 2 March 2025).

Gao Y., Zheng Z. & Henneberry S.R. (2020). Is nutritional status associated with income growth? Evidence from Chinese adults. China Agricultural Economics. Review Volume 12 pp. 507–525. <https://doi.org/10.1108/CAER-11-2019-0216>

Giron, M. S., & De La Vega, S. A. (2022). Prevalence of Diabetes among Community-Living Older Persons in the Philippines: the FITForFrail study. *Journal of the ASEAN Federation of Endocrine Societies*, 37(2), 23–27. <https://doi.org/10.15605/jafes.037.02.15>

Gerontiti, E., Shalit, A., Stefanaki, K., Kazakou, P., Karagiannakis, D., Peppa, M., Psaltopoulou, T. & Paschou, S. (2024). The role of low glycemic index and load diets in medical nutrition therapy for type 2 diabetes: an update. *Hormones* Vol. 23, p.p. 655–665.

Glorioso, Ma. I., Gonzales, M., Avilla, J., & Capanzana, M. (2018). Consumers' Patronage of Healthy Meal Options in a Food Establishment. *Philippine Journal of Science*, 147(2), 255–260.

Grant, S. M., Glenn, A. J., Wolever, T. M. S., Josse, R. G., O'Connor, D. L., Thompson, A., Noseworthy, R. D., Seider, M., Sobie, M., Bhatti, G., Cavanagh, J., Jones, E., & Darling, P. B. (2020). Evaluation of Glycemic Index Education in People Living with Type 2 Diabetes: Participant Satisfaction, Knowledge Uptake, and Application. *Nutrients*, 12(8), 2416. <https://doi.org/10.3390/nu12082416>

Hameed, F., Malik, I. A., Hadi, N. U., & Raza, M. A. (2023). Brand awareness and purchase intention in the age of digital communication: A moderated mediation model of celebrity endorsement and consumer attitude. *Online Journal of Communication and Media Technologies*, 13(2), e202309. <https://doi.org/10.30935/ojcmt/12876>

Harvard Health Publishing. (2023, April 14). *A good guide to good carbs: The glycemic index*. <https://www.health.harvard.edu/healthbeat/a-good-guide-to-good-carbs-the-glycemic-index>

International Rice Research Institute. (2023, October 16). IRRI reveals scientific breakthrough for low and ultra-low glycemic index rice. <https://www.irri.org/news-and-events/news/irri-reveals-scientific-breakthrough-low-and-ultra-low-glycemic-index-rice>

Kamchansuppasin, A., Sirichakwal, P. P., Bunprakong, L., Yamborisut, U., Kongkachuichai, R., Kriengsinyos, W., & Nounmusig, J. (2021). Glycaemic index and glycaemic load of commonly consumed Thai fruits. *International Food Research Journal*, 28(4), 788–794. <https://doi.org/10.47836/ifrj.28.4.15>

Kaur, B., Ranawana, V., Teh, A., & Henry, C. J. K. (2015). The impact of a low glycemic index (GI) breakfast and snack on daily blood glucose profiles and food intake in young Chinese adult males. *Journal of Clinical & Translational Endocrinology*, 2(3), 92–98. <https://doi.org/10.1016/j.jcte.2015.05.002>

Kyrou, I., Tsigos, C., Mavrogianni, C., Cardon, G., Van Stappen, V., Latomme, J., Kivelä, J., Wikström, K., Tsochev, K., Nanasi, A., Semanova, C., Mateo-Gallego, R., Lamiquiz-Moneo, I., Dafoulas, G., Timpel, P., Schwarz, P. E. H., Iotova, V., Tankova, T., Makrilakis, K., & Manios, Y. (2020). Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: a narrative review with emphasis on data from Europe. *BMC Endocrine Disorders*, 20(S1). <https://doi.org/10.1186/s12902-019-0463-3>

Labucay, I. D. (2014). Patterns of Internet usage in the Philippines. In The Internet and the Google age: Prospects and perils (pp. 27–49).
<https://doi.org/10.14705/rpnet.2014.000176>

Lao, V., Paradero, A., & Abilgos-Ramos, R. (2022). Assessing consumers' willingness to buy native delicacies incorporated with fermented rice bran in Leyte, Philippines. *Rice-Based Biosystems Journal*, 10(1), 87–94.

Marangoni, F., & Poli, A. (2008). The glycemic index of bread and biscuits is markedly reduced by the addition of a proprietary fiber mixture to the ingredients. *Nutrition Metabolism and Cardiovascular Diseases*, 18(9), 602–605.
<https://doi.org/10.1016/j.numecd.2007.11.003>

Molnar, D., Novotni, D., Kurek, M., Galić, K., Iveković, D., Bionda, H., & Ščetar, M. (2022). Characteristics of edible films enriched with fruit by-products and their application on cookies. *Food Hydrocolloids*, 135, 108191.
<https://doi.org/10.1016/j.foodhyd.2022.108191>

Mustapa, M. a. C., Kallas, Z., Silande, C., Gagnaire, V., Jan, G., López-Mas, L., & Aguiló-Aguayo, I. (2024). From taste to purchase: Understanding the influence of sensory perceptions and informed tasting on plant-based product purchases - An extension of the theory of planned behavior. *Journal of Agriculture and Food Research*, 16, 101188. <https://doi.org/10.1016/j.jafr.2024.101188>

Nam, SJ & Suk, J. (2024). Influence of health food literacy on willingness to pay for healthier foods: focus on food insecurity. *International Journal for Equity in Health* 23, 80 <https://doi.org/10.1186/s12939-024-02135-1>

Ndetei, D. M., Mutiso, V., Musyimi, C., Nyamai, P., Lloyd, C., & Sartorius, N. (2024). Association of type 2 diabetes with family history of diabetes, diabetes biomarkers, mental and physical disorders in a Kenyan setting. *Scientific Reports*, 14(1). <https://doi.org/10.1038/s41598-024-61984-6>

Pasqualoni, I., Tolve, R., Simonato, B., & Bianchi, F. (2024). The impact of selected ingredients on the predicted glycemic index and technological properties of bread. *Foods*, 13(16), 2488. <https://doi.org/10.3390/foods13162488>

Pechey R. and Monsivais P. (2016). Socioeconomic inequalities in the healthiness of food choices: Exploring the contributions of food expenditures. *Preventive Medicine* 88:203-9. DOI: 10.1016/j.ypmed.2016.04.012

Peres, M., Costa, H. S., Silva, M. A., & Albuquerque, T. G. (2023). The health effects of low glycemic index and low glycemic load interventions on prediabetes and Type 2 diabetes mellitus: A literature Review of RCTs. *Nutrients*, 15(24), 5060. <https://doi.org/10.3390/nu15245060>

Poobalan, A. S., Aucott, L. S., Clarke, A., & Smith, W. C. S. (2014). Diet behaviour among young people in transition to adulthood (18–25 year olds): a mixed method study. *Health Psychology and Behavioral Medicine*, 2(1), 909–928.
<https://doi.org/10.1080/21642850.2014.931232>

Philippine Statistics Authority [PSA]. (2021). Causes of death in the Philippines (preliminary): January to December 2021", available at: <https://psa.gov.ph/content/causes-deaths-philippines-preliminary-january-december> (accessed 15 September 2024).

Ribeiro, A. R., Altintzoglou, T., Mendes, J., Nunes, M. L., Dinis, M. T., & Dias, J. (2018). Farmed fish as a functional food: Perception of fish fortification and the influence of origin – Insights from Portugal. *Aquaculture*, 501, 22–31.
<https://doi.org/10.1016/j.aquaculture.2018.11.002>

Sagili, V. S., Chakrabarti, P., Jayanty, S., Kardile, H., & Sathuvalli, V. (2022). The Glycemic Index and Human Health with an Emphasis on Potatoes. *Foods*, 11(15), 2302. <https://doi.org/10.3390/foods11152302>

Santos M and Assuncao R. (2025). Food Choice, Nutrition, and Public Health. *Foods*. 14(7):1243. <https://doi.org/10.3390/foods14071243>

Schadow, A. M., Revheim, I., Spielau, U., Dierkes, J., Schwingshackl, L., Frank, J., Hodgson, J. M., Moreira-Rosário, A., Seal, C. J., Buyken, A. E., & Rosendahl-Riise, H. (2022). The effect of regular consumption of reformulated breads on glycemic Control: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. *Advances in Nutrition*, 14(1), 30–43.
<https://doi.org/10.1016/j.advnut.2022.10.008>

Shammakh, M., Ali, R. T., & Shaari, T. (2020). The Relationship of Health and Nutrition Claims towards Purchasing Choices among Consumers in Shah Alam, Selangor. *Journal of Nutritional Science and Vitaminology*, 66(Supplement), S222–S225. <https://doi.org/10.3177/jnsv.66.s222>

Shabnam N., Ashraf M.A., Laar R.A. & Ashraf R. (2021). Increased Household Income Improves Nutrient Consumption in Pakistan: A Cross-Sectional Study. *Frontiers in Nutrition* Volume 8. <https://doi.org/10.3389/fnut.2021.672754>

Skřivan, P., Sluková, M., Sinica, A., Bleha, R., Švec, I., Šárka, E., & Pourová, V. (2024). Glycaemic Index of bakery products and possibilities of its optimization. *Applied Sciences*, 14(14), 6070. <https://doi.org/10.3390/app14146070>

Statista. (2025, October). *Pasta - Philippines* | Statista market forecast. <https://www.statista.com/outlook/cmo/food/bread-cereal-products/pasta/phippines>

Ta-asan, K. (2022, May 19). Who Are The Middle Class In The Philippines? Philippine Institute of Development Studies. Retrieved December 4, 2024, from https://pidswebs.pids.gov.ph/CDN/document/1653265260_628ad36c07ed2.pdf

Tan, B., Lau, T., Tan, B., & Lo, Y. (2022). Appealing to the health-conscious: low glycaemic food purchase behaviour. *Food Research*, 6(6), 143–148. [https://doi.org/10.26656/fr.2017.6\(6\).890](https://doi.org/10.26656/fr.2017.6(6).890)

Tariga, J. N., Nolasco, D. P., & Barayuga, S. J. R. (2021). Food consumption habits of consumers in the Philippines: Changes amidst the pandemic. *International Journal of Public Health Science (IJPHS)*, 10(3), 662. <https://doi.org/10.11591/ijphs.v10i3.20823>

Tomas, M. (2021, August 27). Study: More Filipino consumers aware of health benefits of low-GI rice : DA-PhilRice. Philippine Rice Research Institute. Retrieved February 8, 2025, from <https://www.philrice.gov.ph/study-more-filipino-consumers-aware-of-health-benefits-of-low-gi-rice/#:~:text=GI%20is%20a%20value%20assigned%20to%20foods,%E2%80%9CWhite%20or%20polished%20rice%20has%20high%20GI>

Topolska, K., Florkiewicz, A., & Filipiak-Florkiewicz, A. (2021). Functional Food – Consumer Motivations and Expectations. *International Journal of Environmental Research and Public Health*, 18(10), 5327. <https://doi.org/10.3390/ijerph18105327>

Trinidad, T. P., Mallillin, A. C., Sagum, R. S., & Encabo, R. R. (2010). Glycemic index of commonly consumed carbohydrate foods in the Philippines. *Journal of Functional Foods*, 2(4), 271–274. <https://doi.org/10.1016/j.jff.2010.10.002>

United Nations Development Programme [UNDP]. (2024, October 8). *Empowering Filipino Youth for a Resilient Future*. <https://www.undp.org/philippines/press-releases/empowering-filipino-youth-resilient-future>

United Nations Population Fund [UNPFA]. (2025). *Young People*. <https://philippines.unfpa.org/en/topics/young-people-19>

United Nation Department of Agriculture [USDA] (2024). Snack Foods Market Brief. Report Number: RP2024-0015

United States Centers for Disease Control and Prevention. (2024, May 15). Diabetes risk factors. <https://www.cdc.gov/diabetes/risk-factors/index.html>

van Bussel L., van Rossum C., Temme E., Boon P., & Ocké M. (2020). Educational differences in healthy, environmentally sustainable and safe food consumption among adults in the Netherlands. *Public Health Nutrition* 23(12):2057-2067. DOI: <https://doi.org/10.1017/S1368980019005214>

Vlachos D., Malisova S., Lindberg FA. & Karaniki G. (2020). Glycemic Index (GI) or Glycemic Load (GL) and Dietary Interventions for Optimizing Postprandial

Hyperglycemia in Patients with T2 Diabetes: A Review. *Nutrients*. 12(6):1561.
doi: [10.3390/nu12061561](https://doi.org/10.3390/nu12061561)

Wang, R., Liaukonyte, J., & Kaiser, H. M. (2018). Does advertising content matter? Impacts of healthy eating and Anti-Obesity advertising on willingness to pay by consumer body mass index. *Agricultural and Resource Economics Review*, 47(1), 1-31. <https://doi.org/10.1017/age.2018.1>

Wang, X. (2024). The Impact of food nutrition labels on Consumer Behavior: A Cross-national survey and Quantitative analysis. *International Journal of Public Health and Medical Research*, 1(2), 18-27. <https://doi.org/10.62051/ijphmr.v1n2.03>

World Health Organization: WHO. (2019b, December 31). 20 health tips for 2020. <https://www.who.int/philippines/news/feature-stories/detail/20-health-tips-for-2020>

World Health Organization: WHO. (2024, November 14). Diabetes. Retrieved October 25, 2025, from <https://www.who.int/news-room/fact-sheets/detail/diabetes>

Zafar, M. I., Mills, K. E., Zheng, J., Regmi, A., Hu, S. Q., Gou, L., & Chen, L. (2019). Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. *American Journal of Clinical Nutrition*, 110(4), 891-902. <https://doi.org/10.1093/ajcn/nqz149>